Overview and Evaluation of the Automotive Collision Avoidance System Field Operational Test (ACAS FOT)

Jack Ference, NHTSA
Wassim Najm, RITA/Volpe Center

SAE International
2005 Government/Industry Meeting

Washington, D.C. May 9-11, 2005

Outline

Program Overview:

- Program Phases
- System Description
- FOT Description

• Evaluation Overview:

- Analysis Framework
- Safety Benefits Estimation
- Rare Events
- Unintended Consequences

Rear-End Crash Problem

- 2003 General Estimates System data
- Light vehicle crash statistics
- Total 6,071,000 police-reported crashes

Automotive Collision Avoidance System Field Operational Test (ACAS FOT) Program

- Sponsor: U.S. DOT/NHTSA
- Private Consortium:
 - System Development and Build: GM/Delphi
 - Conduct of Field Operational Test: UMTRI
- Independent Evaluator: U.S. DOT/RITA/Volpe Center

ACAS FOT Program Scope

System Description

Forward Crash Warning (FCW):

- Provide drivers with visual and audible alerts to help them avoid or reduce the severity of rear-end crashes.
- Enabled when vehicle speed exceeds 25 mph.

Adaptive Cruise Control (ACC):

- Maintain selected cruise speed if no lead vehicle is impeding the forward motion of the host vehicle.
- Maintain selected headway (1-2 seconds) if lead vehicle is traveling below selected cruise speed.
- Driver use of ACC is optional
- ACC uses throttle & brake control up to 0.3g

Driver-Vehicle Interface – Head Up Display

Steering Wheel Controls

FOT Experimental Design

Algorithm	Total Subjects	Age Groups		
		20 - 30	40 - 50	60 - 70
A	15	5	5	5
В	15	5	5	5
C	66	22	22	22

- 10 ACAS-equipped 2002 Buick LeSabres used
- Participants used vehicle as personal car unsupervised and unrestricted
- 4-week test period per subject:
 - 1 week baseline
 - 3 weeks with ACAS enabled

FOT Exposure

ACC 36% FCW 53%

ACAS Disabled

Total Distance Traveled 36,000 Km

ACAS Enabled

Total Distance Traveled 122,000 Km

Independent Evaluation

Goals:

- Estimate Safety Benefits
- Determine Driver Acceptance
- Characterize System Capability

Safety Impact

- 1. **Driving Conflict Analysis** Global level examination of all FOT driving conflicts to develop quantitative estimates of overall safety benefits of ACAS.
- 2. Near Crash Analysis Detailed Examination of the most severe near crashes to assess the usefulness of ACAS in preventing crashes.
- **3. Driver Impact Analysis** Examination of driver performance data to identify positive or unintended negative effects of ACAS on driving performance and behavior.

Driving Conflict Analysis

Driving Conflict Type and Intensity

Driving Conflict Type

- <u>Conflicts</u>: CAMP data from last-second response studies at <u>comfortable</u> braking or steering level.
- *Near crashes*: CAMP data from last-second response studies at *hard* braking or steering level.

Driving Conflict Intensity

- <u>Low-intensity</u>: Quantified by TTC versus Range rate diagrams derived from CAMP's 50%-ile data.
- *High-intensity*: Quantified by TTC versus Range rate diagrams derived from CAMP's 95%-ile data.

Driving Conflict Identification

Conflict Type and Intensity Classification

Lead
Vehicle
Stopped –
Braking
Response

Safety Benefits Estimation

Simplest Form

$$B = [P_{wo}(C) - P_{w}(C)] \times Miles Driven$$

Useful form

Exposure Ratio Analysis

Analysis:

• Comparison between ACAS disabled (1st week) and 2nd half distance traveled with ACAS enabled.

Dynamic Scenarios:

- Lead vehicle stopped
- Lead vehicle moving at slower constant speed
- Lead vehicle decelerating

Measures of Performance:

- MOP1= No. of conflicts per 100 Km traveled
- MOP2= No. of near crashes per 100 Km traveled

Prevention Ratio Analysis

Driver Response Analysis:

- Initiation Measures:
 - Time-to-collision
 - Time headway
- Intensity Measures:
 - Minimum time-to-collision
 - Peak acceleration
 - Average acceleration

Prevention Ratio Estimation:

Monte Carlo simulations based on data from bins with statistically significant difference in response initiation

Rare Events

- Analysis of *severe* near crashes based on response intensity using aggregate numerical data:
 - TTCmin ≤ 3 seconds and
 - Peak acceleration > 0.3g
- Analysis of video episodes triggered by crash imminent alerts that might have prevented a rearend crash:
 - Driver distraction
 - High peak deceleration

Unintended Consequences

- Analysis of low risk (host vehicle @ constant speed) driving performance using numerical data:
 - Time headway
 - Position within travel lane
 - Speed ratio (vehicle speed/speed limit)
- Analysis of inattention (distraction or eyes-off-the-road) using alert-triggered video episodes.
- Anecdotal remarks based on few observations.

Observations

Questions?

- For further information on ACAS FOT program:
 - Contact *Jack Ference*:
 - ➤ Tel. (202) 366-0168
 - E-mail: Jack.Ference@nhtsa.dot.gov
 - Visit web site:
 - http://www-nrd.nhtsa.dot.gov/departments/nrd-12/pubs_rev.html